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h-Fuzzy Quantum Logics 
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Families of fuzzy subsets equipped by continuous fuzzy connectives which are 
quantum logics in a traditional sense are studied. As a special case, we obtain 
a generalized fuzzy quantum logic introduced recently by Pykacz. 

1. I N T R O D U C T I O N  

The q u a n t u m  logic axiomat ic  approach  to the foundat ions  of  q u a n t u m  
mechanics  studied, for  example,  by Varada ra j an  (1968) is based on the 
following notion.  

Definition I. A q u a n t u m  logic ~ is an o r t h o m o d u l a r  a -o r thocomple t e  
or thoposet ,  i.e., a part ial ly ordered set ~e containing the smallest  element 0 
and the greatest  element 1 equipped with an o r thocomplemen ta t ion  
•  A a ~ ~e such that  the following condit ions are fulfilled: 

(i) ( a • 1 7 7  a for  any a~Ae ( law o f  repeated negation).  
(ii) I f  a, b ~ A  a, a < b, then b • < a • (order  reversing). 
(iii) For  any a~La ,  a ^ a + = 0 ( law o f  contradict ion)  and a v a • = 1 

(excluded middle law), where ^ is the meet  ( the greatest  lower bound  in 
A o) and v is the join ( the least upper  bound  in ~ ) .  

(iv) I f  a, b e A  a, a < b, then there is an element c cA", c < a • such that  
b = a v c ( o r t h o m o d u l a r  law), where c = a • ^ b = (a v bX) • 

(v) I f  {a n } c A a, an _L am (i.e., a ,  < a ~ )  whenever  n ~ m, then the join 
Van exists in ~ .  [] 

Let  q / ~  ~ be a given universe. We denote  by ~ ( q / )  the system of  all 
fuzzy subsets o f  q/, i.e., ~ ( q l ) =  [0, 1] ~'. Recall tha t  a fuzzy subset  
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A e ~ ( q / )  is a mapping A : q / ~  [0, 1]. Crisp subsets of q /a re  identified with 
their characteristic functions, i.e., A is crisp iff A maps q / in to  {0, 1}. The 
partial ordering on ~(q / )  is induced by the natural ordering on [0, 1], i.e., 
A < B iff A(u) < B(u) for any u tag. Fuzzy connectives of  fuzzy comple- 
mentation, fuzzy union, and fuzzy intersection, respectively, are supposed 
to be induced pointwisely by continuous functions e (one-place function, a 
negation on [0, 1]), S (two-place function, a t-conorm on [0, 1]), and T 
(two-place function, a t-norm on [0, 1]), respectively. Hence we have 
A C(u) = e(A(u)), (A u B)(u) = S(A(u), B(u)), and (A n B)(u) = T(A(u), B(u)) 
for any ueq/.  Further, S and T are supposed to be e-dual pair, i.e., 
S(x, y) = e-l(T(e(x),  e(y))), x, y ~[0, 1]. For more details see, e.g., Dubois 
and Prade (1985). 

Let ~ be any subfamily of  ~ ( ~ ) ,  ~ c ~(og). The join v and the 
meet A in ~/r are induced by the partial ordering of fuzzy subsets. Recall 
that if ~ = ~(q/) ,  then the join v and the meet A coincide with the 
original fuzzy union and fuzzy intersection (Zadeh, 1965), respectively, 
which are induced by the t-conorm So, S 0 ( x , y ) = m a x ( x , y )  and by the 
t-norm To, T0(x, y) = min(x, y), respectively. In general, the join v and the 
meet A in ~ need not coincide with Zadeh fuzzy connectives. 

The aim of this paper is to study the following problem: when is a 
system of fuzzy subsets ~ c ~'(q/) equipped by the fuzzy connectives from 
~(q / )  (and hence closed under these connectives) a quantum logic in the 
sense of  Varadarajan (1968) such that the fuzzy complementation corre- 
sponds to the orthocomplementation and the fuzzy union (intersection) 
corresponds to the join (meet)? One example was given recently by Pykacz 
(1994), who solved this problem in the case of  the original (Zadeh, 1965) 
fuzzy complementation, i.e., e (x )=  1 - x  on [0, 1] and the Giles (1976) 
bold union [i.e., S ( x , y ) = m i n ( x  + y ,  1)] and bold intersection [i.e., 
T(x, y) = max(x + y - 1, 0)]. We study the proposed problem from a more 
general point of view. 

2. Q U A N T U M  LOGIC AXIOMS AND FUZZY CONNECTIVES 

The quantum logic axioms (i) and (ii) are fulfilled on ~(a//) (putting 
A •  A c) if and only if the complementation e is an order-reversing 
involution on [0, 1]. But then c is generated by a generator g, 
g: [0, 1] ~ [0, 1], g(0) = 0, g(1) = 1, g is continuous and strictly increasing, 

Vx~[0, 1]: e(x) = g - l ( 1  -g(x))  (1) 

For more details see, e.g., Trillas (1979) or Dubois and Prade (1985). In 
what follows, we will suppose that e is defined by equation (1). Now, it is 
easy to see that any system ~ c ~ (q / )  closed under fuzzy complementa- 
tion fulfills the axioms (i) and (ii). 
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Let fuzzy union w on ~(q/ )  be induced by a continuous t-conorm S. 
Using the results of Ling (1965) (see also Schweizer and Sklar, 1983), we 
know that S is an ordinal sum of Archimedean t-conorms {Si}i~t, i.e., 
there is a disjoint family {]ai, bi[, i e I )  of open subintervals of [0, 1] so that 

S(x, y) = ai + (Si((x - ai) /(bi - a;), (y  - ai)/(bi - ai))) " (bi - ae) 

if both x and y are contained in some ]a~, bt[, i~I, and S(x, y) = max(x, y) 
otherwise. Recall that a continuous t-conorm S is called Archimedean if 
for any xe]0,  1[ it is S ( x , x ) > x .  By Ling (1965), any Archimedean 
t-conorm S is generated by an additive generator h, h: [0, 1] ~ [0 ,  ~] ,  
h(0) = 0, h is continuous and strictly increasing, 

Vx, ye[0 ,  1]: S(x, y) = h*(h(x) + h(y)) (2) 

where h* is a pseudoinverse of h defined through 

h*(t) = h-limin(h(1),  t)), t~[0, oo] (3) 

If  h(1) = c~, then h * =  h -1 and the corresponding t-conorm S is called a 
strict t-conorm. If  h(1) < oo, then we can suppose without any loss of 
generality that h (1 )=  I and the corresponding t-conorm S is called a 
nilpotent t-conorm. Taking into account the axiom (iv), the De Morgan 
law should hold. Consequently the t-norm T inducing the fuzzy intersec- 
tion c~ is given by 

T(x, y) = e(S(e(x), e(y))) = f * ( f ( x )  + f ( y ) )  

where f ( x )  = h(e(x)) and f*( t )  = f -1 ( ra in ( f (0 ) ,  t)). 
Now, the excluded middle law is fulfilled on if(q/) (replacing the join 

by the fuzzy union) if and only if 

S(x, e(x)) = 1 for any x~[0, 1] (4) 

But then the cardinality of the index set I in the ordinal sum representation 
of S should be 1 and the corresponding open interval ]al, b~[ is equal to 
]0, 1[. If not, then there would be an element x~]0, 1[ such that 
S(x, e(x)) = max(x, e(x)) < 1, which is a contradiction with equation (4). 
Hence S is generated by an additive generator h through equation (2). 
Further, for any strict t-conorm S one has S(x, y) = 1 iff max(x, y) = 1, i.e., 
S(x, e(x)) = 1 only for x ~ {0, 1 }. Hence S should be a nilpotent t-conorm 
and we can suppose that its additive generator h fulfills h(1) = 1, i.e., 

S(x, y) =h-~(min(h(x)  +h(y ) ,  1)), x, ye[O, 1] (5) 

Then S(x, e(x)) = 1 iff h(x) + h(e(x)) > 1. Further, the law of contradiction 
is true on ~(q/ )  (replacing the meet by the fuzzy intersection) if and only 
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if the excluded middle law is true. A simple computation shows that the 
axiom (iii) is fulfilled on ~-(a#) iff 

e(x) > h - l ( 1  - h ( x ) )  --d(x) for any x~[0, 1] (6) - 

where d is a fuzzy complementation operator generated by h. Note that (6) 
ensures the validity of the fuzzy analog of the orthomodular law on ~(q/) ,  
i.e., whenever A, BE~(q/) ,  A < B, then there is C ~ ( q / ) ,  C < A C, such 
that B = A u C. Hence the fuzzy analog of the axiom (iv) would hold on 
~-(q/) if the equalities C = A C n B  = (A wBC) c hold. The last equality is 
obvious due to the duality of T and S inducing the fuzzy connectives of 
intersection and union. Because of pointwise definition of fuzzy connectives 
through e, S, and T, respectively, it is enough to prove the validity of the 
following statement: 

for any 0 < a < b < l  one has 

b = S(a, c(S(a, c(b)))) (7) 

L e m m a  I. Equation (7) is true if and only if both e and S have 
the same generator h, i.e., if e ( x ) = h - l ( 1 - h ( x ) )  and S ( x , y ) =  
h- l (min(1,  h(x) + h(y))).  Then the corresponding t-norm T has a genera- 
t o r f =  1 - h .  

Proo f  Fix an element a < 1 and let bn = 1 - ( 1 - a ) / n .  Then 
bn = S(a, e(S(a, e(b,)))) < 1, which implies h(bn) = h(a) + h(e(S(a, e(b,)))), 
n = 1, 2 , . . . .  From the continuity of c and S one has 

1 = lim h(b,) = lim(h(a) + h(e(S(a, e(b,))))) = h(a) + h(c(a)) 

i.e., e ( a ) = h - l ( 1 - h ( a ) ) .  For a = l ,  it is obvious that e ( 1 ) = 0 =  
h- l (1  - 1). We have just shown that e is generated by the same generator 
h as the t-conorm S is--this  is a necessary condition for the validity of 
equation (7). 

Now, we show the sufficiency. Let h be a common generator for both 
e a n d S .  F o r 0 < a < b - < l ,  wehave  

S(a, e(S(a, e(b)))) 

= h*[h(a) + h -1(1 - h(h*[h(a) + h(h -1(1 - h(b)))]))] 

= h*[h(a) + h-1(1  - h(h*[h(a) + 1 - h(b)]))] 

= h*[h(a) + 1 - (h(a) + 1 - h(b))] 

= h*[h(b)] = b 

which is equation (7), in fact. 
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From the duality of T and S we have 

f ( x )  = h(e(x) )  = h(h -~(1 - h(x)))  = 1 - h(x)  

for any xe[0,  1]. �9 

The validity of the fuzzy analog of the axiom (v) on ~(q/ )  is obvious. 
All the previous facts are summarized in the following theorem. 

Theorem 1. The system ~(q/ )  of all fuzzy subset.s of a universe J// 
fulfills the fuzzy analogs of the axioms ( i )-(v)  of quantum logic using the 
fuzzy complementation as an orthocomplement, the fuzzy union as the 
join, and the fuzzy intersection as the meet, respectively, if and only if the 
fuzzy connectives on ~(o?/) are induced by a complementation e and by a 
t-conorm S with a common generator h and by a t-norm T with generator 

f = l - h .  �9 

E x a m p l e  1. Take a generator h(x) = x,  xe[0,  1]. Then the correspond- 
ing complementation operator c(x) = 1 - x  induces the Zadeh fuzzy com- 
plementation. The corresponding t-conorm S(x, y) = min(1, x + y) induces 
the Giles bold union and its dual t-norm T ( x , y ) = m a x ( 0 ,  x + y -  1) 
induces the Giles bold intersection. This is the background of Pykacz' 
(1994) approach to fuzzy quantum logics. �9 

3. h-FUZZY QUANTUM LOGICS 

Let h be a generator of fuzzy connectives on ~(q/) ,  h(1) = 1. Let C be 
any nonempty subsystem of ff(ql) closed under fuzzy complementation 
and under countable fuzzy unions. It is evident that the axioms ( i )-(v)  are 
true also on C .  Further, ~ contains the smallest element ~ and the 
greatest element q/ (take A ~ f ' ;  then ~ = A ~ A c ~ ~ and 
# / =  A uAC~U).  Why may ~ not be a quantum logic in general? This is 
caused by the possible noncompatibility between the ordering and the fuzzy 
connectives. For ~ to be a quantum logic, it is necessary to exclude, for 
example, any nontrivial element orthogonal with itself. 

Definit ion 2. Let h be a generator, h(1) = 1. 
is called an h-weak empty set if A _k A, i.e., 
A • = h - 1 ( 1  - h(A(u))) ,  u ~ql. 

It is easy to see that A is an h-weak empty 

A fuzzy subset A ~-(~//) 
A < A  • where we put 

set iff A < h - l(1/2). 

Theorem 2. Let the fuz.zy complementation and the fuzzy union on 
~(q/ )  be induced by operators e and S generated by a common generator 
h, h(1) = 1. Let ~Z~ # ~ c Y(~//) be closed under fuzzy complementation 
and under countable fuzzy unions of pairwise orthogonat elements. Then 
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the fuzzy union of sequences of pairwise orthogonal elements from ~ is the 
same as the join with respect to the natural ordering on ~ if and only if 
the only h-weak empty set in q/" is ~ .  

Proof. If  an h-weak empty set A ~ ~ is contained in ~ ,  then A L A. 
It is evident that A Cq/.  Hence there is ueq/  such that A(u)e]0, 1[. But 
then S(A(u), A(u)) > A(u), i.e., A w A ~ A = A v A. 

Now, let A, Be"g ,  A • B, and let A u B  be not the lowest upper 
bound of A and B in "U. Then there is an upper bound C ~  of A and B 
such that either A w B >-C and there is an element u*~U such that 
S(A(u*), B(u*)) > C(u), or C is not comparable with A wB. In the first 
case, put D = C w ( A  u B )  • Then De~e-. For any ue~ one has 

h(D(u)) = min( 1, h(C(u)) + 1 - h((A u B)(u)))) 

= 1 + h(C(u))  - h(A(u)) - h(8(u)) 

> 1-min(h(A(u)) ,  h(B(u))) >- 1/2 

The last inequality follows from the orthogonality of d and B: A < B • 
i.e., A ( u ) < h  1(1-h(B(u))) for any u~q/; consequently h(A(u))< 1 -  
h(B(u)), which implies the result. Further, it is evident that D(u*)< 1. 
For D • we see that D• h - l ( 1 -  h(D(u))) < h-l(1/2),  i.e., D • is an 
h-weak empty set. Further, D• because of D e , e  and D• 
because of D• *) > O. 

Now, let C be an upper bound of both A and B which is not 
comparable with A u B. For the sake of simplicity, in this step we suppose 
h(x) = i ( x ) = x  on [0, 1] [i.e., we suppose the original approach from 
Pykacz (1994)]. In case of a general generator h, it is enough to use h(A(u)) 
instead of A(u) and similarly for B(u), C(u), D(u), etc., in what follows. Put 

0u, = {u ~ou; C(u) < A(u) + a(u)} 

q/2 = {u eq/; C(u) = A(u) + B(u)} 

~u3 = {u ~ u ;  C(u) > a ( u )  + B(u)} 

The noncomparability of C and A w B ( =A + B because of A _1_ B) is 
equivalent with the nonemptiness of both q/1 and q/3- The pairwise 
orthogonality of A, B, and C • ensures D = A w B w C • e3w. We have 

D(u) = min( 1, A(u) + B(u) + 1 - C(u)) 

={1  on q/1 u q/2 
A(u) + B(u) + 1 - C(u) < 1 on ~ 
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D is again an upper bound of both A and B and hence A, B, and D • are 
pairwise orthogonal and consequently E = A u B w D • ~U.  We have 

E(u) = min( 1, A(u) + B(u) + 1 - D(u)) 

=~A(u)+B(u) on qllwql z 
I C(u) on ~g3 

We have C<E,  i.e., C_LE • Then F = C u E •  and hence 
F • = C • c~ E~//~, where 

F• = max(0, E(u) - C(u)) 

={A(u)+B(u) -C(u)  on~ ~ 

It is evident that 0 < F• < min(A(u), B(u)) < 1/2 on ~ and F• = 0 
otherwise, i.e., F • is an / -weak empty set different from ~ contained in U.  

We have just shown that if the only h-weak empty set contained in 
is ~ ,  then for any couple A, B of  orthogonal elements from ~ one has 

A w B = A  v B 

where A v B is the join of elements of  U induced by the natural ordering 
on ~ .  

Let {A, }~= ~ c ~ be a sequence of pairwise orthogonal elements from 
V.  Put 

B,,= O A~, n = l , 2 , . . . ,  and D=- O A ~ 
i ~ l  i = 1  

Then Bn, n~N, and D are contained in ~//-, the sequence {B.}~=~ is 
nondecreasing, and D is its least upper bound in ~ ,  

D=~/B~ 
n = l  

We show by induction that B, = VT= ~ Ai- For  n = 2, it was shown above. 
Let us suppose that the foregoing equality is true for some n ~N. Then the 
pairwise orthogonality of  the sequence {A,} implies A; <A~+ 1 for all 
i = 1 , . . . ,  n, and consequently 

B,=VT=IAi<A~+I ,  i.e., B,A_A,+I 

Both B, and An +1 are contained in ~//', they are orthogonal, and hence 

n + l  

B,+I=B,  wA,+1=B,  v A , + I =  A ivAn+l=  V Ai 
i = 1  i = l  
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We have just shown that the fuzzy union of any finite sequence of 
pairwise orthogonal elements from ~ coincides with its join in ~ .  The 
following equality completes the proof of the theorem: 

An = D = Bn = = An �9 
n = l  n = l  n = l  i n = l  

The foregoing results justify the following definition. 

Definition 3. Let h be a generator, h: [0, 1] ~[0 ,  1], h(0) = 0, h(1) = 1, 
h is continuous and strictly increasing (then h is called a normed genera- 
tor). A nonempty family ~ c ~(q/)  of fuzzy subsets of universe q/will be 
called an h-fuzzy quantum logic if it satisfies the following properties: 

1. ~ is closed under h-fuzzy complementation, i.e., if A ~ ,  then 
A• ", where A ' ( u )  = h - 1 ( 1  - -  h(a(u))),  ueq l .  

2. ~ is closed under countable h-fuzzy unions of pairwise orthogonal 
elements, i.e., if { A n } c ~ ,  An-<A~ for n Cm; then UAn e ~ ,  
where (UAn)(u) = h -  l(min(1, ~ h(An(u)))), u ~ ell. 

3. ~ is the only h-weak empty set contained in ~ .  

Remark  1. Let i be the identity on [0, 1], i(x) = x. Then i is a normed 
generator and any /-fuzzy quantum logic is a generalized fuzzy quantum 
logic of Pykacz (1994). 

L e m m a  2. Let h and g be two normed generators. Let V c ~(q/)  be 
an h-fuzzy quantum logic. Then g- = g-l(h(~//")) = { B ~ ' ( ~ ) ,  3A ~U,  for 
any u~q/: B ( u ) =  g - l (h (A(u ) ) ) }  is a g-fuzzy quantum logic. 

Proof. For the transformation of h-fuzzy connectives into g-fuzzy 
connectives see, e.g., Mesiar (1992). We will show only that if A is an 
h-weak empty set, then B = g -  l(h(A)) is a g-weak empty set. Recall that A 
is an h-weak empty set iff A(u) < h-1(1/2) for any u~q/. Both g-~ and h 
are strictly increasing and hence g - l ( h ( A ( u ) ) ) < g - l ( h ( h - l ( 1 / 2 ) ) ) =  
g-1(1/2), u~~ ', which implies that B is a g-weak empty set. �9 

Due to the previous lemma, for any normed generator h, the system of 
all h-fuzzy quantum logics is isomorphic to the system of all generalized 
fuzzy quantum logics of Pykacz. Using this isomorphism (or directly from 
the Definition 3 and our previous results), we get the following corollary. 

Corollary 1. Let h be any normed generator and ~ an h-fuzzy 
quantum logic. Then ~ is a quantum logic, i.e., an orthomodular a- 
orthocomplete orthoposet with respect to the standard fuzzy set inclusion 
as partial order and the h-fuzzy complementation as orthocomplementa- 
tion. For pairwise orthogonal elements the join coincides with the h-fuzzy 
union. 
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Remark 2. In the early version of Theorem 1 in Pykacz (1994) the 
existence of a join of any sequence of pairwise orthogonal elements from 
(with respect to the fuzzy ordering) was required, where ~ is a generalized 
fuzzy quantum logic (i.e., an/-fuzzy logic), for ensuring ~//" be a traditional 
quantum logic. Due to our Theorem 2, this requirement is superfluous. 

We think that the h-fuzzy quantum logics are the only families of 
fuzzy subsets which are quantum logics in the classical sense of Varadara- 
jan (1968). 

Hypothesis. Let a nonempty family ~r c ~-(~) equipped with point- 
wisely generated fuzzy connectives be a quantum logic. Then there is a 
normed generator h so that ~r is an h-fuzzy quantum logic. 

Note that if the above hypothesis is true, then the only fuzzy subset 
systems (equipped with pointwisely generated fuzzy connectives) which are 
traditional quantum logics are (up to an isomorphism) the generalized 
fuzzy quantum logics of Pykacz. 
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